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Abstract

A new correction procedure for dynamic analysis of linear, proportionally damped, continuous systems under traveling

concentrated loads is proposed; both cases of non-parametric (moving forces) and parametric (moving mass) loads are

considered. Improvement in the evaluation of the dynamic response is obtained by separating the contribution of the

low-frequency (LF) modes from that of the high-frequency (HF) modes. The former is calculated, as usual, by classical

modal analysis, while the latter is taken into account using a new series expansion of the corresponding particular solution.

The advantage of the suggested method is immediately shown in the calculation of the stress distribution since it is able to

capture the stress discontinuities due to the nature of the applied loads themselves. Numerical results are presented to

discuss the convergence of the proposed series and to show the accuracy of the calculated response compared to the

classical series expansion solution.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Theoretical and experimental investigations on continuous systems under moving concentrated loads have
been ongoing for more than a century [1]. This problem finds its widest field of application in bridge
engineering where the dynamic nature of moving loads, combined with the presence of damage scenarios,
either due to environmental loads (corrosion, material loss, supports deterioration) or to stress concentrations
(cracks, joint failures), can dramatically reduce the life of the structure.

In this framework a correct evaluation of the stress distribution due to the moving loads is of fundamental
importance in order to recognize when the structure is approaching an overstressed condition. However, the
dynamic problem of a continuous system subjected to a moving load is quite cumbersome; first of all the
difficulty in evaluating the response depends on the moving vehicle model. For the simplest moving force
model, approximate analytical solutions are available primarily based on the series expansion of the unknown
displacement function [2–4]. On the other hand for the moving mass problem (the inertia of the moving
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.01.040

ing author. Tel.: +39 091 6568406; fax: +39 091 6568407.

ess: bilello@diseg.unipa.it (C. Bilello).

/www.diseg.unipa.it (C. Bilello).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.01.040
mailto:bilello@diseg.unipa.it
http://www.diseg.unipa.it


ARTICLE IN PRESS
C. Bilello et al. / Journal of Sound and Vibration 315 (2008) 226–238 227
sub-system is taken into account) approximate solution methods have been presented on the basis of series
expansions [5,6], iterative solution of integral equations [7], and finite element discretization [8,9]. The moving
oscillator [10–12] as well as more complex vehicle models have also been investigated in the literature [13–16].
For beam type systems the Euler–Bernoulli model is generally employed, however when the travelling loads
move very fast (close to the critical velocity) the Timoshenko model, that includes effects of shear deformation
and rotatory inertia, appears to be more appropriate [17–20]. Recently, the presence of structural damage into
the continuous system has been taken into account [21–23]. Moreover, a research field has been dealing with
the identification of the moving loads from stress field measurements [24].

However, most of the above-mentioned research works use classical modal analysis approach and
truncation procedures to calculate the system response: the whole procedure is known as modal displacement
method (MDM) [25]. This approach leads to accurate estimations of displacements and their time derivatives,
however the truncation of the HF-modes may lead to a significant underestimation of the stress distribution
that is proportional to higher order spatial derivatives of displacements whose accuracy, in turn, is directly
related to the truncation order. This is especially true for the case of moving concentrated loads, since
the nature of the problem leads to stress discontinuities that could never be obtained by using a classical CN

(class of N time differentiable functions) series expansion of the unknown displacement function.
In order to take into account the contribution on the response due to HF-modes neglected in the classical

MDM, several methods have been proposed for discrete (or discretized ones) structures: the mode-
acceleration method (MAM) [26–33], where a pseudo-static response obtained by neglecting the inertial and
damping forces in the original system is added to the MDM solution, the dynamic correction method (DCM)
[34], where the particular solution of the equation of motion is evaluated [35,36]; the force derivative method
(FDM) [37] whose correction term is built as a series expansion of derivatives of the forcing function.

The problem of transient response has only recently received attention [38]. An original approach based on
the separation of the low-frequency (LF)- and high-frequency (HF)-response components has been presented
in Di Paola and Failla [39] and the correction term is given in series form providing the convergence conditions
of the proposed series as well.

To the authors’ knowledge, no systematic research has been dedicated to correction procedures for
continuous systems. The case of moving load excitations has been addressed in Refs. [40–42]. Particularly, in
Pesterev et al. [40] an improved series representation for the dynamic solution of one-dimensional (1D)
systems under a moving force and a moving oscillator is proposed. This solution is able to capture the jump in
the shear force at the point of attachment of the oscillator in an approximate way. In Biondi and Muscolino
[41] and Biondi et al. [42] two approaches are proposed: the first is an extension of the DCM to continuous
systems, the second is based on the use of space–time-varying eigenfunctions; the latter appears to be more
computationally convenient even though quite cumbersome in the implementation.

The authors [43] have recently proposed an extension to continuous systems of the correction procedure
presented in Di Paola and Failla [39]. In this paper, the procedure exploited in Bilello et al. [43] is extended to
the case of moving concentrated loads; both the cases of a moving force and a moving mass are considered.
Although the Timoshenko beam and non-proportional damping model are certainly more effective to
investigate the effects of the HF-modes on the system response in this paper the proportionally damped
Euler–Bernoulli beam model is used both to highlight the correction procedure itself and to compare the
results with those presented in the literature.

Advantages of the proposed method are discussed in detail and numerical results are presented and
compared to the classical series expansion solution.

2. Problem statement

The equation of motion for a continuous 1D systems is given by

N½ €wðx; tÞ� þ C½ _wðx; tÞ� þ L½wðx; tÞ� ¼ f ðx; tÞ; x 2 D; tX0, (1)

where w(x,t) is the unknown displacement function, D ¼ 0 l
� �

is the space-domain, f(x,t) is the forcing
function, while N½��, C½��, and L½�� are linear homogeneous differential operators of mass, damping and
stiffness. Hereinafter the given system is assumed to be proportionally damped, that is C½�� ¼ aN½�� þ bL½��
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(a,bAR+); the latter assumption is not strictly required to the aim of this paper but it allows to obtain a
compact analytical form of the correction term presented later. The initial conditions associated to Eq. (1) are
w(x,0) ¼ w0(x) and _wðx; 0Þ ¼ _w0ðxÞ, while generic boundary conditions are assumed.

The solution of Eq. (1) can be found by expanding the unknown function in a series of the ortho-normal
eigenfunctions jj(x)ACN, i.e.

wðx; tÞ ¼
X1
j¼1

jjðxÞqjðtÞ, (2)

where qj(t) are unknown modal coordinates to be calculated. By substituting Eq. (2) into Eq. (1) and using the
well-known orthogonality relationships [2], one yields to the jth modal equation in the form

€qjðtÞ þ 2zjoj _qjðtÞ þ o2
j qjðtÞ ¼ gjðtÞ for j ¼ 1; 2; . . .1, (3)

where oj is jth natural frequency (oj�1pojpoj+1), zj ¼ aþ bo2
j =2oj, and

gjðtÞ ¼

Z
D

jjðxÞf ðx; tÞdx. (4)

The relevant initial conditions are qjð0Þ ¼
R

D
jjðxÞN½w0ðxÞ�dx and _qjð0Þ ¼

R
D
jjðxÞN½ _w0ðxÞ�dx.

The moving force problem is simply obtained by substituting for f(x,t) in Eqs. (1) and (4) the expression

f ðx; tÞ ¼ F ðtÞd½x� xðtÞ�, (5)

where F(t) is the time-varying moving force, dð�Þ is the Dirac delta function, and x(t) denotes the location of the
moving force at time t.

Thus, using the properties of the Dirac delta function, the jth modal equation can be written as

€qjðtÞ þ 2zjoj _qjðtÞ þ o2
j qjðtÞ ¼ F ðtÞjj½xðtÞ� for j ¼ 1; 2; . . .1. (6)

This approach, commonly referred to as modal analysis, always requires an unavoidable truncation of the
series (2), i.e. only a limited number of modes, say m, are retained in the analysis, and Eq. (2) is rewritten as

wðx; tÞ ¼
Xm

j¼1

jjðxÞqjðtÞ. (7)

In most engineering problems this is justified by the fact that spatial distribution and frequency content of
loading are such that the contribution to the system response of the HF modes is assumed to be negligible.
Therefore accurate estimations of displacements are obtained, however the truncation may lead to a
significant underestimation of the stress distribution that is proportional to higher order spatial derivatives of
w(x,t) whose accuracy, in turn, is directly related to the truncation order. This is especially true for the case of
moving concentrated loads since the nature of the problem leads to stress discontinuities that could never be
evaluated correctly by using a CN series representation as that of Eq. (7).

In the next section the correction method proposed in Ref. [43], that accounts for the HF-modes neglected
in the truncated series expansion (7), will be briefly summarized and extended to the case of moving load
excitations.

3. Correction method

The idea behind the method is that of splitting the system response into its LF and HF contribution.
In Ref. [43] the governing equations of motion for the LF — as well as for the HF-response are explicited and
it is shown that the LF-response, denoted by ŵðx; tÞ, is calculated by classical modal analysis using a limited
number of modes m, while the steady-state HF-response, denoted by ~wðx; tÞ, is evaluated in a series form that,
by a proper choice of the number m, can be proven to be uniformly and absolutely convergent. Specifically,
the converge criterion can be stated as [43]

omXOmax, (8)
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where om and Omax are the mth natural frequency of the system and the maximum frequency content of f(x,t),
respectively.

Thus, by introducing the eigenfunctions vector Û
T
ðxÞ ¼ ½j1ðxÞ j2ðxÞ . . . jmðxÞ �, the LF-response is

calculated as

ŵðx; tÞ ¼ Û
T
ðxÞq̂ðtÞ, (9)

where q̂TðtÞ ¼ ½ q1ðtÞ q2ðtÞ . . . qmðtÞ � collects the first m modal components (evaluated by classical modal
analysis), while the HF-response is asymptotically obtained in series form as [43]

~wðx; tÞ ¼
X1
p¼1

Z
D

~Kpðx; yÞ
qp�1f ðy; tÞ

qtp�1
dy. (10)

In Eq. (10) ~Kpðx; yÞ are the HF-iterative kernels defined as

~Kpðx; yÞ ¼ Kpðx; yÞ � Û
T
ðxÞX�2m F pÛðyÞ, (11)

where

Kpðx; yÞ ¼ �

Z
D

K1ðx; zÞfC½Kp�1ðz; yÞ� þN½Kp�2ðz; yÞ�gdz, (12)

K1(x,y) is the static Green function of the system and K0(x,y) ¼ 0. Moreover Xm ¼ diagðo1 o2 . . . om Þ,
and Fp is a m�m matrix, calculated in a recursive form as

Fp ¼ �X�2m ðKmFp�1 þ Fp�2Þ, (13)

where Km ¼ diagð 2z1o1 2z2o2 . . . 2zmom Þ, F1 ¼ Im, and F0 ¼ 0m being Im the m�m identity matrix and
0m the m�m null matrix; it is worth to notice that if the system is not proportionally damped the second term
on the r.h.s. of Eq. (11), that removes the LF-modes contribution from the iterative kernels, could not be
written in compact explicit form using Eq. (13). By summing up Eqs. (9) and (10) the total response is obtained
in the form

wðx; tÞ ¼ Û
T
ðxÞq̂ðtÞ þ

X1
p¼1

Z
D

~Kpðx; yÞ
qp�1f ðy; tÞ

qtp�1
dy. (14)

In order to evaluate the stress distributions in the continuous system higher order derivatives of the
displacement function are required; they are simply given in the form

qnwðx; tÞ

qxn
¼

dnÛ
T
ðxÞ

dxn
q̂ðtÞ þ

X1
p¼1

Z
D

qn ~Kpðx; yÞ

qxn

qp�1f ðy; tÞ

qtp�1
dy. (15)

It can be shown that the second term on the r.h.s. of Eq. (15) greatly improves the stress evaluation.
As stated in Ref. [43] Eq. (14) strictly holds at the steady state, moreover the calculation of the

iterative kernels ~Kpðx; yÞ does not require the knowledge of the HF-eigenvalues and eigenfunctions
since one can take full advantage of the fact that the K1(x,y) is known in an analytical form for different
stiffness operators and boundary cases, thus the iterative kernels Kp(x,y) can be calculated in closed form
using Eq. (12). The improved solution provided by Eq. (14) is derived in the most general form but it can be
made explicit for any given load function f(x,t), including the moving load-mass case as shown in the next
sections.

Hereinafter some considerations on the proposed solution (14) and the correction method in Ref. [41] for
the moving oscillator case are reported. The generalized form of the DCM solution proposed by Biondi and
Muscolino [41] (using the notation introduced in the present work) is given as

wDCMðx; tÞ ¼ Û
T
ðxÞq̂ðtÞ þ wparðx; tÞ � Û

T
ðxÞq̂UND

par ðtÞ
h i

, (16)
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where

wparðx; tÞ ¼
X1
p¼1

Z
D

KUND
p ðx; yÞ

qp�1f ðy; tÞ

qtp�1
dy. (17)

KUND
p ðx; yÞ are the undamped-iterative kernels obtained from Eq. (12) by neglecting the damping operator

and q̂
UND
par ðtÞ is the vector collecting the undamped particular solutions of the first m modes. However, the

series on the r.h.s. of Eq. (17) is not convergent if Omax4o1; to prove this let us assume f ðx; tÞ ¼ pðxÞ eiOt,

i.e. the forcing function is a mono-component signal of frequency o1oOoos, then KUND
p ðx; yÞ in Eq. (17) can

be expanded in the form [43]:

wparðx; tÞ ¼
X1
p¼1

dp

jpðxÞ
R

D
jpðyÞpðyÞdy

o2
p

, (18)

where dp ¼
P1

r¼0ð�1Þ
r
ðO=opÞ

r. Since o1oOoos all the coefficients dp of the series (18) up to the sth would
diverge. Conversely, if Ooo1 the ratios O/opo1 for p ¼ 1,2,yN, thus using the binomial expansion yields

dp ¼
o2

p

o2
p � O2

(19)

and Eq. (18) is recast in the form

wparðx; tÞ ¼
X1
p¼1

jpðxÞ
R

D
jpðyÞpðyÞdy

o2
p � O2

(20)

which is the exact expression for the particular solution of the undamped continuous system. It follows that
the wpar(x,t) converges to the exact solution only if O/opo1. On the contrary the series expansion in Eq. (14) is
always convergent as demonstrated in Ref. [43].

3.1. The moving force case

Let us assume the forcing function f(x,t) be given by Eq. (5) and x(t) ¼ nt, where n is the constant speed of
the moving force; the latter hypothesis is not strictly required but it will be used herein to simplify the
calculations. Inserting Eq. (5) into Eq. (10) leads to

~wðx; tÞ ¼
X1
p¼1

Z
D

~Kpðx; yÞ
qp�1

qtp�1
½F ðtÞdðy� vtÞ�dy. (21)

Eq. (21) may be rewritten in an explicit form by using the product derivative rule, i.e.

dr

dtr
½g1ðtÞg2ðtÞ� ¼

Xrþ1
s¼1

crþ1�s
s�1

drþ1�sg1ðtÞ

dtrþ1�s

ds�1g2ðtÞ

dts�1
, (22)

where cm
n ¼

mþ n

m

� �
are the binomial coefficients (Pascal’s triangle coefficients). By inserting Eq. (22) into

Eq. (21) ~wðx; tÞ is given as

~wðx; tÞ ¼
X1
p¼1

Xp

s¼1

c
p�s
s�1

dp�sF ðtÞ

dtp�s

Z
D

~Kpðx; yÞ
ds�1dðy� vtÞ

dts�1
dy. (23)

It can be easily shown that the time-derivative applied to the Dirac delta function on the r.h.s. of Eq. (23)
may be changed in a y-derivative using the relationship

qr

qxr
2

dðx1 � ax2Þ ¼ ð�1Þ
rar qr

qxr
1

dðx1 � ax2Þ (24)
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thus Eq. (23) is rewritten in the form

~wðx; tÞ ¼
X1
p¼1

Xp

s¼1

ð�1Þs�1vs�1c
p�s
s�1

dp�sF ðtÞ

dtp�s

Z
D

~Kpðx; yÞ
ds�1dðy� vtÞ

dys�1
dy: (25)

Then by applying the properties of the Dirac delta function derivatives, i.e.,Z
D

gðx1Þ
qr

qxr
1

dðx1 � ax2Þdx1 ¼ ð�1Þ
r q

rgðx1Þ

qxr
1

����
x1¼ax2

; x1 2 D (26)

yields the equation

~wðx; tÞ ¼
X1
p¼1

Xp

s¼1

c
p�s
s�1v

s�1 d
p�sF ðtÞ

dtp�s

qs�1 ~Kpðx; yÞ

qys�1

����
y¼vt

. (27)

Thus the moving force solution that accounts for the HF contributions is written as

wðx; tÞ ¼ Û
T
ðxÞq̂ðtÞ þ

X1
p¼1

Xp

s¼1

c
p�s
s�1v

s�1 d
p�sF ðtÞ

dtp�s

qs�1 ~Kpðx; yÞ

qys�1

����
y¼vt

, (28)

where the vector q̂ðtÞ is obtained by solving the first m equation of the system (6). The spatial derivatives of the
response function can be evaluated as

qnwðx; tÞ

qxn
¼

dnÛ
T
ðxÞ

dxn
q̂ðtÞ þ

X1
p¼1

Xp

s¼1

c
p�s
s�1v

s�1 d
p�sF ðtÞ

dtp�s

qnþs�1 ~Kpðx; yÞ

qxnqys�1

����
y¼vt

. (29)

Finally, for the special case in which F(t) ¼ F ¼ cost, Eq. (28) writes as follows:

wðx; tÞ ¼ Û
T
ðxÞq̂ðtÞ þ F

X1
p¼1

vp�1q
p�1 ~Kpðx; yÞ

qyp�1

����
y¼vt

. (30)

It should be pointed out that the first term of the series in Eq. (30) coincides with that proposed in Ref. [40]
that is substantially a MAM extension to continuous systems. A discussion on the number of dynamic modes
that have to be included in the analysis will be presented in Section 4.

3.2. The moving mass case

In this section, the extension to the case of a moving mass is presented. For this case the forcing function
f(x,t) is given by Eq. (5) where

F ðtÞ ¼Mv g�
d2wðx; tÞ

dt2

����
x¼vt

� �
, (31)

Mv is the moving mass and g is the acceleration of gravity. The double time-derivative of w(x,t) on the r.h.s. of
Eq. (31) can be evaluated by using the compound functions derivative rules, i.e.,

AðtÞ ¼
d2wðx; tÞ

dt2

����
x¼vt

¼
q2wðx; tÞ

qt2
þ 2v

q2wðx; tÞ

qxqt
þ v2

q2wðx; tÞ
qx2

� �����
x¼vt

. (32)

Eqs. (31) and (32) clearly show that the forcing function depends on the system response itself; the latter
circumstance makes the solution process more cumbersome than the moving force problem. As in fact,
substituting Eqs. (32) and (31) into Eq. (28) yields

wðx; tÞ ¼ Û
T
ðxÞq̂ðtÞ þMvg

X1
p¼1

vp�1 q
p�1 ~Kpðx; yÞ

qyp�1

����
y¼vt

�Mv

X1
p¼1

Xp

s¼1

c
p�s
s�1v

s�1 d
p�sAðtÞ

dtp�s

qs�1 ~Kpðx; yÞ

qys�1

����
y¼vt

, (33)

where the third term on the r.h.s. is due to the inertia of the moving mass. The vector q̂ðtÞ is obtained by
solving a set of m second-order coupled differential equations with time-varying coefficients, that is written in
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compact matrix form as

MðtÞ €̂qðtÞ þ CðtÞ _̂qðtÞ þ KðtÞq̂ðtÞ ¼MgÛðvtÞ, (34)

where M(t), C(t), and K(t) are m-dimensional time-dependent square matrices

MðtÞ ¼ Im �MvÛ
T
ðvtÞÛðvtÞ,

CðtÞ ¼ Km � 2MvvÛ
T
ðvtÞ

dÛðxÞ
dx

�����
x¼vt

,

KðtÞ ¼ X2
m �Mvv2Û

T
ðvtÞ

d2ÛðxÞ
dx2

�����
x¼vt

. (35)

Eq. (33) cannot be solved directly since the function A(t) is dependent on the unknown function w(x,t) (see
Eq. (32)). Two approaches may be proposed to overcome this difficulty. The first approach, using a procedure
similar to that proposed in Pesterev and Bergman [40] for the moving oscillator problem, consists in
considering that the displacement function w(x,t) and its time derivatives can be approximated accurately by
the dynamic contribution due to the first few modes, then in Eq. (32) it may be assumed wðx; tÞ ffi ŵðx; tÞ, and

AðtÞ ffi
d2ŵðx; tÞ

dt2

����
x¼vt

¼ Û
T
ðxÞ
���
x¼vt

€̂qðtÞ þ 2v
dÛ

T
ðxÞ

dx

�����
x¼vt

_̂qðtÞ þ v2
d2Û

T
ðxÞ

dx2

�����
x¼vt

q̂ðtÞ. (36)

Inserting Eq. (36) into Eq. (33) provides accurate results as shown in the numerical application.
In the second approach Eq. (33) can be solved iteratively such as, at the kth step, one may write

wðkÞðx; tÞ ¼ Û
T
ðxÞq̂ðtÞ þMvg

X1
p¼1

vp�1q
p�1 ~Kpðx; yÞ

qyp�1

����
y¼vt

�Mv

X1
p¼1

Xp

s¼1

c
p�s
s�1v

s�1 dp�sA kð ÞðtÞ

dtp�s

qs�1 ~Kpðx; yÞ

qys�1

����
y¼vt

,

AðkÞðtÞ ¼
q2wðk�1Þðx; tÞ

qt2
þ 2v

q2wðk�1Þðx; tÞ

qxqt
þ v2

q2wðk�1Þðx; tÞ
qx2

� �����
x¼vt

. (37)

The iterations end when a convergence criterion is satisfied. As an example, it may be computational
convenient to define it as

�ðkÞ ¼

Z t

0

jAðkÞðtÞ � Aðk�1ÞðtÞjdtptolerance: (38)

The two approaches have been compared through different numerical applications and their results are
identical although the first appeared to be computationally more efficient. Results of such analysis are not
reported here for brevity’s sake.

4. Terms to be included in the low-frequency response

Questions may arise concerning the number of terms to be included into the LF-response ŵðx; tÞ for the case
of traveling loads. As mentioned earlier, the convergence criterion is stated by Eq. (8), however, in the case
under investigation, it is not straightforward to define the maximum frequency Omax. For clarity sake, let us
assume the continuous system to be an Euler–Bernoulli beam of stiffness EI and constant linear mass density
r, traversed by a force moving at constant speed v, thus the mth modal equation would be given in the form

€qmðtÞ þ 2zmom _qmðtÞ þ o2
mqmðtÞ ¼ FjmðOmtÞ, (39)

where om ¼ l2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rl4

q
, Om ¼ lmv=l, lm is the mth dimensionless eigenvalue of the beam (for example in a

simply supported beam lm ¼ mp) and jm(Omt), for m sufficiently large, can be considered as a
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Fig. 1. Selection of the number of modes to be included into the LF-response of Euler–Bernoulli beam subject to a moving force.
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mono-component signal of frequency Om. Thus, the condition (8) yields

lmXvl

ffiffiffiffiffiffi
r

EI

r
. (40)

Since the continuous system has an infinite number of eigenvalues, there will always be an integer m such
as Eq. (40) is satisfied (Fig. 1). If the moving force is also time-dependent the condition (40) should be
rewritten as

lmXmax vl

ffiffiffiffiffiffi
r

EI

r
; l

ffiffiffiffiffiffiffiffiffi
rO2

F

EI

4

s0
@

1
A, (41)

where OF denotes the maximum frequency content of F(t).
It could be easily shown that, for different types of continuous 1D systems, it is always possible to introduce

conditions like Eq. (40) (or Eq. (41)) useful to define the number of terms to be included in the LF-response
ŵðx; tÞ.

5. Numerical application

Let us consider a uniform simply supported Euler–Bernoulli beam traversed by a mass moving at constant
speed. The beam parameters are the same as those used in Refs. [7,10–12]: L ¼ 6m; EI ¼ 275:4408Nm2; r ¼
1N s2=m2; Mv=rL ¼ 0:2, F ¼Mvg ¼ 11:78N, v ¼ 6m=s. The damping operator is given as C½�� ¼ a and
a/r ¼ 2.0 s�1.

First the inertia of the moving mass is neglected leading to the moving force problem. For the given beam
parameters and moving load speed the convergence criterion (40) provides m ¼ 1, i.e. only 1 term is strictly
required for the evaluation of the LF-response. In Fig. 2 the shear force distribution along the beam length at
time t̄ ¼ l=5v ¼ 0:2 s is reported. Only the first mode is included in the LF-response and the series on the r.h.s.
of Eq. (30) appears to be convergent by using 3 terms. As shown in Fig. 3 including few more modes (m ¼ 4)
into the LF response makes the convergence much faster, in fact only the first term of the correction series is
needed in order to obtain the convergence of the proposed solution. This is obviously due to the nature of
the system response which is strictly non-stationary, i.e. the homogeneous contribution of the first few modes
(say m+1, m+2,y), which would be lost if included in the HF-response, cannot be neglected.

In Fig. 4 the MDM solution using 50 terms of the classical series expansion (2) is compared to the solution
obtained by using the correction method with m ¼ 1 and p ¼ 3, m ¼ 4 and p ¼ 1, and m ¼ 5 and p ¼ 1. The
MDM solution oscillates around the proposed solution: the conventional series expansion (obtained as sum of
CN function) is not able to capture the discontinuity in the shear force distribution even if a large number of
modes is used and the Gibbs effect clearly appears. On the other hand the shear jump is captured accurately by
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Fig. 2. Moving force case: shear force distribution at the time t̄ by the proposed method using m ¼ 1 and p ¼ 1 ( ), m ¼ 1 and

p ¼ 3 ( ), m ¼ 1 and p ¼ 5 (solid).

Fig. 3. Moving force case: shear force distribution at the time t̄ by the proposed method using m ¼ 4 and p ¼ 1 ( ), m ¼ 4 and

p ¼ 3 ( ), and m ¼ 4 and p ¼ 5 (solid).

Fig. 4. Moving force case: shear force distribution at the time t̄ by the proposed method using m ¼ 1 and p ¼ 3 ( ), m ¼ 4 and

p ¼ 1 ( ), m ¼ 5 and p ¼ 1 (solid), and MDM solution by using m ¼ 50 ( ).
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the proposed solution procedure (even for m ¼ 1), but the convergence is obtained only by increasing the
number of modes included into the LF-response from m ¼ 1 (strictly required) to m ¼ 4. It is worth to point
out that these numerical results are consistent with those obtained in Ref. [40] even though the basic concept
behind the proposed correction term [43] is quite different.
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Fig. 5. Moving mass case: coupling force calculated by MDM using m ¼ 5 ( ), m ¼ 8 ( ), and m ¼ 12 (solid).

Fig. 6. Moving mass case: shear force distribution at the time t̄ by the proposed method using m ¼ 8 and p ¼ 1 ( ), m ¼ 8 and

p ¼ 3 ( ), and m ¼ 8 and p ¼ 5 (solid).

Fig. 7. Moving mass case: shear force distribution at the time t̄ by the proposed method using m ¼ 8 and p ¼ 1 (solid), MDM solution by

using m ¼ 50 ( ), moving force solution by the proposed method using m ¼ 4 and p ¼ 1 ( ).
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The moving concentrated load model, that is the most used in the literature, is a mathematical idealization,
however from an engineering point of view it is commonly accepted when the ratio of the load area to the main
system dimension is very small, for example this is the case of vehicles moving on bridges. In real structures the
stress discontinuity that arises from this model becomes a rapid change of the stress sign in a small region, as it
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Fig. 8. Moving mass case: bending moment distribution at the time t̄ by the proposed method using m ¼ 8 and p ¼ 1 (solid), MDM

solution by using m ¼ 5 ( ).
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would be obtained using a moving load model distributed on a small area; however, the aim of this paper is to
present a correction form of the classical series solution to account for the HF modes contribution and not to
discuss whether the moving concentrated load is the best model to deal with this type of problems.

The moving mass case is investigated in Figs. 5–7 by using the first approach presented in Section 3.2.
The force F(t) acting on the beam from the moving mass is reported in Fig. 5 in the time interval [0 l/v] by
using 5, 8 and 12 modes of the MDM solution. Compared to the moving oscillator case [40], where the
coupling force depends only on the displacement function and its time derivative, the moving mass coupling
force requires few more modes to converge, however, beginning with m ¼ 8, the approximation can be
considered quite accurate.

These force and the time-dependent coefficients q̂iðtÞ (for i ¼ 1,2,y,8) of the MDM were substituted in
Eq. (29) to calculate the shear force distribution at t̄ ¼ l=5v ¼ 0:2 s by the proposed method.

In Fig. 6 the shear distribution along the beam calculated at t̄ by using m ¼ 8 and p ¼ 1, m ¼ 8 and p ¼ 3,
m ¼ 8 and p ¼ 4 are reported. Due to the large number of modes included into the LF-response all curves
overlap, i.e. convergence is obtained by using just 1 term (p ¼ 1) of the series on the r.h.s. of Eq. (33). In Fig. 7
the moving mass as well as the moving force solution calculated by the proposed method are reported. The
MDM solution for the moving mass case using 50 terms of the classical series expansion is also reported for
comparison. The conventional series is still not able to capture the shear discontinuity. Moreover the effect of
the inertia of the moving load on the system response is clearly noticed; it can be shown that such a difference
becomes more relevant as the mass and the speed of the moving load increase.

Although not shown, the second approach proposed in Section 3.2 leads to the same results, as those
presented here providing that the number of modes included into the LF-response is sufficient to obtain a
good approximation of the coupling force.

Finally, in Fig. 8 the bending moment distribution is reported; also in this case the proposed solution is
shown to be more accurate compared to the MDM solution calculated by using 50 terms.

6. Conclusions and remarks

A correction procedure to improve the evaluation of the dynamic response of linear, proportionally
damped, continuous 1D systems traversed by moving loads has been presented. The method is based on the
separation of the LF- and HF- response contribution: the first is evaluated by classical modal analysis while
the second is obtained as a series expansion of the particular solution.

Compared to the DCM the proposed solution is more accurate and suitable since it provides clearly a
convergence criterion and it takes into account the structural damping into the correction term, moreover it
includes the MAM correction term into its formulation.

As shown by the numerical example the proposed corrected solution greatly improves the stress response
resolution. Moreover the method is also computationally efficient, in fact few terms of the correction series are
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required to obtain accurate solutions. For the case under investigation, where the system response is strictly
non-stationary, the number of terms is related to the number of modes included into the LF response: if the
modes strictly required for the convergence are used, 3–4 terms of the correction series are needed while if few
more modes are included into the LF response just 1 term of the correction series can be sufficient. It should
also be remarked that the HF iterative kernels that appear into the series expansion are calculated in closed
form only once for any given continuous system and then used for any type of forcing function (moving
oscillator problem, multiple moving loads, combinations of moving and dynamic loads).

The proposed solution is general and can be used to analyze different load scenarios, however it requires the
knowledge of the frequency content of the forcing function in order to guarantee the robustness of the
method; for most of natural excitation sources this is known with good confidence, otherwise one may use a
preliminary signal analysis in order to estimate the maximum frequency content of the forcing function.

The authors are currently working on the possibility of applying the proposed solution procedure to moving
forces identification problems.
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